High-Accuracy Power Quality Disturbance Classification Using the Adaptive ABC-PSO as Optimal Feature Selection Algorithm

نویسندگان

چکیده

Power quality disturbance (PQD) is an important issue in electrical distribution systems that needs to be detected promptly and identified prevent the degradation of system reliability. This work proposes a PQD classification using novel algorithm, comprised artificial bee colony (ABC) particle swarm optimization (PSO) algorithms, called “adaptive ABC-PSO” as feature selection algorithm. The proposed adaptive technique applied combination ABC PSO then used A discrete wavelet transform extraction method, probabilistic neural network classifier. We found highest accuracy (99.31%) could achieved through nine optimally selected features out all 72 extracted features. Moreover, demonstrated high performance noisy environment, well real system. When comparing presented system’s previous studies, ABC-PSO optimal algorithm considered at high-range scale; therefore, can classify practical

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature selection using genetic algorithm for classification of schizophrenia using fMRI data

In this paper we propose a new method for classification of subjects into schizophrenia and control groups using functional magnetic resonance imaging (fMRI) data. In the preprocessing step, the number of fMRI time points is reduced using principal component analysis (PCA). Then, independent component analysis (ICA) is used for further data analysis. It estimates independent components (ICs) of...

متن کامل

A Novel Scheme for Improving Accuracy of KNN Classification Algorithm Based on the New Weighting Technique and Stepwise Feature Selection

K nearest neighbor algorithm is one of the most frequently used techniques in data mining for its integrity and performance. Though the KNN algorithm is highly effective in many cases, it has some essential deficiencies, which affects the classification accuracy of the algorithm. First, the effectiveness of the algorithm is affected by redundant and irrelevant features. Furthermore, this algori...

متن کامل

Feature Selection using PSO-SVM

method based on the number of features investigated for sample classification is needed in order to speed up the processing rate, predictive accuracy, and to avoid incomprehensibility. In this paper, particle swarm optimization (PSO) is used to implement a feature selection, and support vector machines (SVMs) with the one-versus-rest method serve as a fitness function of PSO for the classificat...

متن کامل

An Improved Mean-Shift Tracking Algorithm using PSO-Based Adaptive Feature Selection

Traditional mean-shift tracking algorithm use pre-defined tracking feature. Its trends to lead tracking failure in the complex background scenes and fast-changing background scenes. In this paper, an improved mean-shift tracking algorithm using Particle swarm optimization (PSO) based adaptive feature selection is presented to improve the tracking performance. We assume that the features with be...

متن کامل

A Novel Approach to Feature Selection Using PageRank algorithm for Web Page Classification

In this paper, a novel filter-based approach is proposed using the PageRank algorithm to select the optimal subset of features as well as to compute their weights for web page classification. To evaluate the proposed approach multiple experiments are performed using accuracy score as the main criterion on four different datasets, namely WebKB, Reuters-R8, Reuters-R52, and 20NewsGroups. By analy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14051238